

Acta Informatica Malaysia (AIM)

DOI: http://doi.org/10.26480/aim.02.2024.69.78

ISSN: 2521-0505 (Online) CODEN: AIMCCO

RESEARCH ARTICLE

DESIGN OF A PROPERTY PRODUCT RECOMMENDATION SYSTEM USING ASSOCIATION RULE METHOD BASED ON USER INTERACTION PATTERNS

Susi Wagiyati Purtiningruma, Yudi Irawan Chandrab*, Dian Gustinaa, Nafisah Yuliania, Fahrul Nurzamana, Ihonny Z.Aa, Agus Wismoa

- ^aUniversitas Persada Indonesia YAI, Jakarta, Indonesia
- ^bSekolah Tinggi Manajemen Informatika dan Komputer Jakarta STI&K, Jakarta, Indonesia;
- *Corresponding Author Email: yirawanc@gmail.com

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article History:

Received 20 March 2024 Revised 18 June 2024 Accepted 09 July 2024 Available online 11 July 2024

ABSTRACT

This work creates an association rule-based real estate product recommendation system. Personalizing property suggestions based on user behavior optimises property searches. Data-driven insights enhance dynamic property market user experience. Association rules alter property advice. Data-driven insights and adaptability improve property search by proposing homes depending on user engagement patterns. Strong algorithms establish location, budget, and property associations, and association rule technology and user interaction patterns increase property recommendations. Personalized property discovery uses accurate and adaptive suggestions from continuous learning. Results reveal that user interaction pattern-based association rule techniques improve property suggestion accuracy and personalization. The system's tailored advice improves property market decisions, confirming its usefulness and adaptability. Insufficient user data might distort suggestions, especially for specific interests. Not enough user diversity can lower system accuracy. User data and privacy must be secured to optimize the recommendation system. Association rule and user engagement patterns can transform property recommendations. This innovative technique can improve property searches, provide personalized ideas, and help consumers make informed decisions in a competitive market.

KEYWORDS

Property recommendation system, ASSOCIATION rule method, User interaction patterns, Personalized suggestions, Real estate decision-making

1. Introduction

Some property websites group properties by kind (houses, shop houses, offices, boarding houses, etc.), size, status (for sale or rent), ownership letter status, facilities, contents, provinces, and cities for easy searching and property information. There are two categories of information seekers. The first type knows their needs. Type 2 is unsure about their needs. For the second sort of user, provide help to assess their property needs (Owen, 2019).

This study suggests employing Apriori and Association Rule algorithms to suggest products based on user profiles or product features. The system uses Apriori Association Rule to find product relationships in a dataset. The system collects user-viewed advertising for analysis. The user's search process weights data attributes by frequency. System usage analysis proposes advertisements.

Researcher in 2023 used the Apriori Algorithm for BM Warehouse Store Sales Data (Fitriah et al., 2023), While another study, proposed a hybrid content-based and collaborative method for the Implementation of Data Mining Purchasing Patterns at Santoso Tiga Sumenep Store (Wijaya et al., 2023). Since it uses user datasets instead of training data or expert input, Apriori Association Rule is more accurate than Naive Bayes. With more data, the Apriori Association Rule method takes longer.

PT Brighton Property provided data for this study. Processing Apriori Association Rule data can boost the company's property product promotion and client transaction interest. How to recommend property

products using system user activity? Evaluation of user activity pattern data using Apriori association rules?

Learning from Brighton Indonesia website property type, price, area, and address is limited. Try blackbox testing. Apriori association rule-analyzed system utilisation will develop a feature recommendation system. Help buyers find their dream home and showcase the company's assets with a simple property search and information system. Research suggests that the apriori association rule technique can increase system usage-based property marketing, which may increase consumer interest in the company's properties.

2. LITERATURE REVIEW

2.1 Recommendation System

A recommendation system is software designed to assist users in making decisions when faced with large amounts of information. The system provides personalized recommendations, such as what items to buy, what books to read, or what music to listen to (Jogiyanto, 2005). Personalized recommender systems must first recognize each existing user.

Recommendation systems must create and maintain a user profile that includes user interests. Amazon's e-commerce recommendation system, for instance, stores all customer purchase transactions, comments, and reviews/ratings (Pradana, 2016; Sun et al., 2023). Two approaches can be

Quick Response Code Access this article online

Website: www.actainformaticamalaysia.com

DOI:

10.26480/aim.02.2024.69.78

used to form a user profile: implicit and explicit. The implicit approach involves storing and learning user behavior to build user profiles. This behavior can take the form of likes/dislikes, ratings, and other actions related to various items. In contrast, the explicit approach involves directly asking the user to describe the items they like.

2.2 Apriori

Another technique used in data mining is the Apriori algorithm, which is a type of association rule. This rule explains the association between attributes, also known as affinity analysis or market basket analysis (Laksito and Kusrini, 2019). Apriori finds comparable things based on user ratings. The algorithm develops a user profile from item properties. In a document, the forming attribute is its words. Based on criteria, these user profile parameters are weighted. These are the algorithm steps:

- The product is divided based on a vector of its forming components.
- The system creates a user profile based on the weight of the component vector that forms an item. User profiling can use the TF-IDF (term frequency-inverse document frequency) algorithm. TF represents the number of terms in a document (Dwi, 2016), while the IDF value can be calculated using the formula:

$$i\alpha r_i = \log \left(\sin \frac{df_i}{df_i} \right)$$
 (1)

n is the number of all documents while df is the number of documents that have term i.

Based on their profile's resemblance to the item's vector of components, the system will determine a user's like or dislike. If the algorithm thinks the user will like it, it will recommend it. Benefits of content-based recommendation systems:

- Content-based recommendation systems can explain results generation.
- ii. Content-based recommendation engines may suggest unrated products. Drawbacks of content-based recommendation algorithms include:
- iii. Content-based recommendation systems cannot produce unexpected results (Serendipity Problem).
- iv. Content-based recommendation systems require user profiles with interests and preferences. Poorly profiled and inactive new users cannot obtain recommendation system recommendations (Cold Start Problem).

2.3 Association Rule Mining

Associative rules between objects are found via association analysis or association rule mining (Toivonen, 2017). Many data mining approaches include association analysis. Frequent pattern mining, a stage of association analysis, helps academics create efficient algorithms. Support, the percentage of database combinations of these items, and confidence, the relationship strength, value associative rules. Association analysis has two steps:

• High-frequency pattern analysis

This stage finds item combinations that match database support value minimums. Formula for item support value:

Support (A) = Number of Transactions containing A / Total Transactions

(2)

while the support value of 2 items is obtained from the following formula:

Support $(A \cap B)$ = Number of Transactions containing A and B / Total Transactions (3)

Associative rule formation

After all the high-frequency patterns are found, the associative rule that fulfills the minimum requirement for confidence is found by calculating the confidence of the associative rule A B. The confidence value of the rule A B is obtained from the following formula:

 $P(B\mid A)$ = Number of Transactions containing A and B / Number of Transactions containing A

2.4 Minimum Support

The minimum support value distinguishes frequent items or criteria from infrequent ones. It is determined based on the analysis observations and affects the analysis results ("Frequent Itemset Mining Using LP-Growth Algorithm Based on Multip...: Ingenta Connect," n.d.). A higher support value results in fewer selected items or criteria and no attachment relationship between them. Similarly, a smaller support value allows more items or criteria to pass the selection, resulting in less specific analysis. Therefore, it is crucial to test and determine the appropriate support value to produce the most accurate analysis.

2.5 Minimum Confidence

The minimum confidence value is used to measure the relationship between items in an association rule. It is a unit of measurement that needs to be determined by the relevant parties. The greater the minimum confidence value, the weaker the relationship between the appropriate criteria, but it leads to maximum analysis results. Similarly, decreasing the minimum confidence value strengthens the correlation between the relevant criteria, but it does not maximize the analysis results.

2.6 Blackbox Testing

Black Box testing, as defined by ("Test suite completeness and black box testing - Bonifácio - 2017 - Software Testing, Verification and Reliability - Wiley Online Library," n.d.), verifies that all software functions were executed correctly according to functional requirements. Software engineers can get input conditions that meet all programme functional criteria with this test. This test can detect erroneous or missing functions, interface errors, data structure or external database access errors, initialization and termination mistakes, functional validity, system sensitivity to input values, and data restrictions.

3. RESEARCH METHODOLOGY

3.1 Development Model

The system development model used in this research is the Waterfall Model (Chandra et al., 2022). The stages of the software development process are as shown in figure 1:

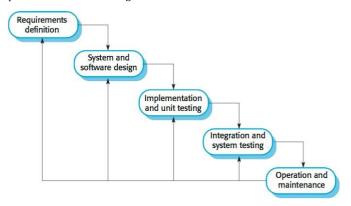


Figure 1: Waterfall Model Activity Stage

Definition of Requirements

PT Brighton's Head of Marketing is interviewed to discover the problem's emphasis, which is analysed using property product data.

• System and Software Design

Problems will be solved and a system designed at this level. System design employing Data Flow Diagram, Conceptual Data Model, Physical Data Model, database table structure, and presentation.

· Implementation and Unit Testing

PHP-coded system creation using Codeigneiter Framework. This research manages databases with MYSQL. The manufacturing process includes system unit or sub-program testing.

Integration and System Testing

System testing after completion. Testing is done using Black Box Testing. Trials are meant to ensure the system meets design and research goals.

Operations and Maintenance

(4)

This research is system design, so this stage is skipped.

3.2 Data collection methods

In collecting the data needed in conducting this research are as follows:

Interview

The PT Brighton Properti marketing department was interviewed. The purpose of this interview was to determine customer property needs. Interviews included requests for research data.

Data and Documentation Study

Collecting data needed for research activities obtained from product marketing staff, such as a list of property data sold and detailed property data.

3.3 Current system analysis

In the current property marketing system there is no product recommendation system based on system usage patterns. In general, the current property product marketing system can only search for property products based on property categories and property areas.

3.4 Problem analysis

System visitors do not get property product recommendations that match usage patterns. System visitors must search for property products independently based on the search parameters provided such as property categories and property area locations.

3.5 Problem solving method analysis

The Apriori method is used to provide property recommendations that match user behavior. The following is the flow of the apriori method work process as shown in figure 2:

Figure 2: Flow of the Apriori Method

4. FINDING AND DISCUSSION

At this stage, the application of the association rule method with a support value of $\bf 1$ is tested, the example data used can be seen in table $\bf 1$:

4.1 Application of association rule method with support value 1

Table 1: Sample Ad details opened			
User ID	ser ID Advertising ID Criteria Name		
	1	Building Area > 500 m2, bathroom 2, Bedroom 3, PDAM, Electricity 2.200 Watt	
	2	Building Size < 300 m2, bathroom 1, Bedroom 2, PDAM, Electricity 2.200 Watt	
26	3	Building Area > 500 m2, bathroom 2, Bedroom 5, PDAM, Electricity 3.500 Watt	
26	23	Building Size > 300 m2 < 500 m2, room bathroom 2, bedroom 3, PDAM, Electricity 2.200 Watt	
	Building Area > 500 m2, bathroom 2, Bedroom 5, Well Pump, Electricity 3,500 Watt		
	25	Building Area > 500 m2, bathroom 3, Bedroom 6, PDAM, Electricity 4.400 Watt	

Based on the ad search pattern data above, the frequency value for the first stage iteration (C1) is shown in Table 2:

Table 2: Frequency Value Iteration C1				
User ID	Number Criteria	Criteria	Total Frequency	
	1	Building area < 300 m2	1	
	2	Building area > 300 m2 < 500 m2	1	
	3	Building area > 500 m2	4	
	4	Bathroom 2	4	
	5	Bathroom 3	1	
	6	Bedroom 2	1	
26	7	Bedroom 3	2	
26	8	Bedroom 5	2	
	9	Bedroom 6	1	
	10	PDAM	5	
	11	Well Pump	1	
	12	Electricity 2200 Watt	3	
	13	Electricity 3500 Watt	2	
	14	Electricity 4400 Watt	1	

With a support value of 2, the final result of iteration stage 1 must have a minimum frequency value of 2. Here are the results of iteration stage 1 as in table 3 below:

Table 3: Results of Iteration 1 (L1)				
User ID	Number Criteria	Criteria	Total Frequency	
	3	Building area > 500 m2	4	
	4	Bathroom 2	4	
	7	Bedroom 3	2	
26	8	Bedroom 5	2	
	10	PDAM	5	
	12	Electricity 2200 Watt	3	
	13	Electricity 3500 Watt	2	

The next step is to form a new item set by crossing the product of each item set that passes stage 1. The following results of the formation of the item set of iteration stage 2 (C2) are shown in table 4:

Table 4: Item Set Formation Iteration C2		
User ID	Criteria Number	
	3, 4	
	3, 7	
	3, 8	
	3, 10	
	3, 12	
	3, 13	
	4, 7	
	4, 8	
	4,10	
	4, 12	
26	4, 13	
	7, 8	
	7, 10	
	7,12	
	7,13	
	8,10	
	8, 12	
	8,13	
	10, 12	
	10, 13	
	12, 13	

Based on the results of the formation of new item sets in the 2nd iteration stage, the system calculates the frequency value again for each item set. The following is the result of the frequency value of iteration stage 2 as in table 5 below:

Table 5: C2 Iteration Frequency Value		
User ID	Criteria Number	Frequency
	3, 4	3
	3, 7	1
	3,8	2
	3, 10	5
	3, 12	1
	3, 13	2
	4, 7	2
	4, 8	2
	4, 10	4
	4, 12	2
26	4, 13	2
	7,8	0
	7, 10	2
	7, 12	2
	7, 13	0
	8, 10	1
	8, 12	0
	8, 13	2
	10, 12	3
	10, 13	1
	12, 13	0

With a support value of 2, the final result of iteration stage 2 must have a minimum frequency value of 2. The following results of iteration stage 2 are shown in table 6:

Table 6: Results of Iteration 2 (L2)		
User ID	Criteria Number	Frequency
	3, 4	3
	3, 8	2
	3, 10	5
	3, 13	2
	4, 7	2
	4, 8	2
26	4, 10	4
	4, 12	2
	4, 13	2
	7, 10	2
	7, 12	2
	8, 13	2
	10, 12	3

The next stage is to form the 3rd iteration item set (C3). Formation of item sets in stage 3 by looking at the frequency value of each item set, as in table 7 below:

Table 7: C3 Iteration Formation		
User ID	Criteria Number	
	3, 4, 7	
	3, 4, 8	
	3, 4, 10	
	3, 4, 12	
	3, 4, 13	
	4, 7, 8	
	4, 7, 10	
26	4, 7, 12	
	4, 7, 13	
	7, 8, 10	
	7, 8, 12	
	7, 8, 13	
	8, 10, 12	
	8, 10, 13	
	10, 12, 13	

The frequency values of the item pairs in the 3rd iteration are shown in Table 8:

Table 8: Item Pair Value Iteration 3 (L3)		
User ID	Criteria Number	Frequency
	3, 4, 7	1
	3, 4, 8	2
	3, 4, 10	2
	3, 4, 12	1
	3, 4, 13	2
	4, 7, 8	0
	4,7,10	1
26	4, 7, 12	2
	4, 7, 13	0
	7, 8, 10	0
	7, 8, 12	0
	7, 8, 13	0
	8, 10, 12	0
	8, 10, 13	1
	10, 12, 13	0

With a support value of 2, the final result of iteration stage 3 must have a minimum frequency value of 2. The following results of iteration stage 3 are shown in table 9 below:

Table 9: Results of Iteration 3 (L3)		
User ID	Criteria Number	Frequency
	3, 4, 8	2
26	3, 4, 10	2
20	3, 4, 13	2
	4, 7, 12	2

The next step is to form the 4th iteration item set (C4) and count the number of item pair frequencies that have been successfully formed. The following results of the formation of the 4th iteration and the frequency value are shown in table 10:

Table 10: Iteration C4		
User ID	Criteria Number	Frequency
	3, 4, 8, 10	1
	3, 4, 8, 12	0
26	3, 4, 8, 13	2
26	4, 8, 10, 12	0
	4, 8, 10, 13	1
	8, 10, 12, 13	0

With a support value of 2, the final result of iteration stage 4 must have a minimum frequency value of 2. The following results of iteration stage 4 that have frequency values above or equal to the support value are shown in table 11 below:

Table 11: Iteration 3 (L3) result		
User ID Criteria Number Frequency		
26	3, 4, 8, 13	2

Iteration 4 produced 1 connected criteria relationship. Therefore, advertising guidelines are Building Area > 500 m2, 2 baths, 5 bedrooms, 3,500 Watt Electricity. The association rule technique was evaluated with support values of 2, 3, and 4, yielding the following results:

- No pair/criteria set item in stage 3 meets the support value, preventing the system from making the correct recommendation.
- No frequency pair passes in the next iteration. The system cannot make the proper recommendation in stage 3 since no pair/item set of criteria passes the support value.

4.2 Data Flow Diagram (DFD)

Data flow diagrams show how operations and data flow in the proposed system. The data flow diagram has these subdiagrams:

Level 0 Context Diagram

Data and system user flow is shown in context diagrams. See Figure 3 for the system context diagram design:

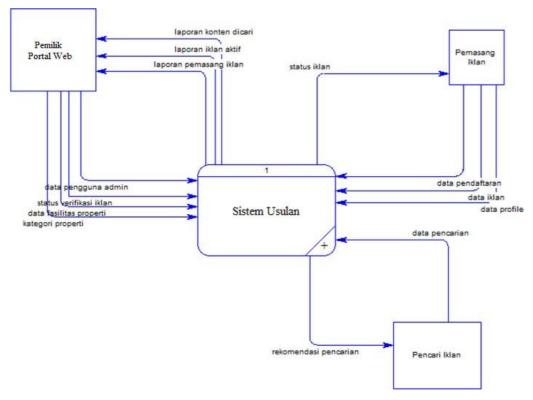


Figure 3: Context Diagram (Level 0)

Based on the context diagram, a derivative level of the process is made to be able to see in detail the process flow in the system. The following level 1 diagram design is shown in Figure 4:

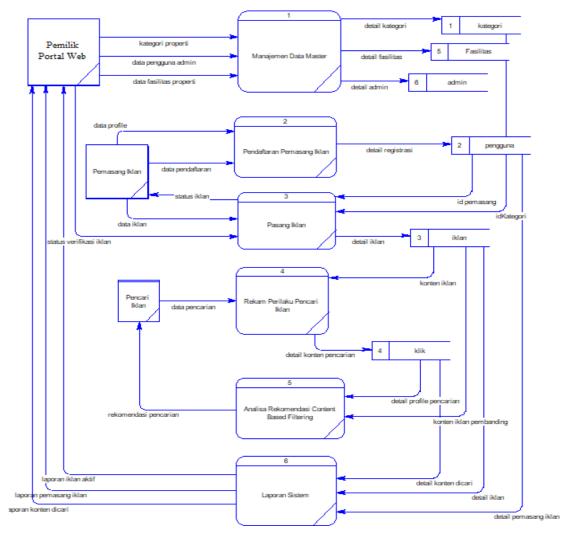


Figure 4: Data Flow Diagram Level

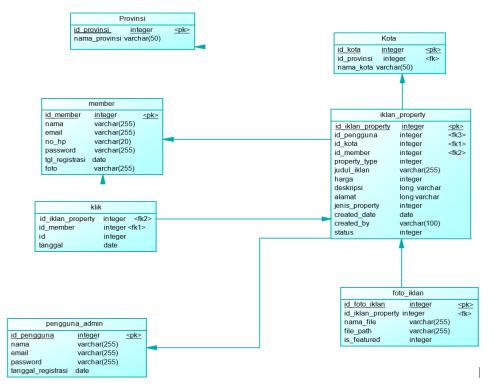


Figure 5: Physical Data Model Database System

4.3 System Database Design

Designing system databases is data modelling. System builders learn data flow and database table column contents from data modelling. The Physical Data Model database system design is shown in Figure 5.

4.4 Hardware and Software Requirements

In implementing the use of the system created, hardware and software are used, among others:

Hardware

Hardware generates data, programmes, and outputs. A server supporting this application has these hardware specs:

a. Processor: Intel Core i7

b. Memory: 16.0GB Dual-Channel

c. HardDisk: 2794GB Seagate and 931GB Seagate

d. Monitor: 1920x1080 pixels

e. Keyboard 108 keys

f. Mouse: Optic PS/2

Software

In developing this application the author uses software with the following specifications:

- a. Operating System: Windows 7 Ultimate
- b. Programme Package:
- XAMPP (Apache, MySQL)
- Bootstrap 5.0
- Code Igniter 4.0
- Notepad++
- Google Chrome, Mozilla Firefox, Mozilla Firefox Developer.

4.5 System Implementation Results

The following are some of the implementation results in the form of page views on the web as shown in Figure 6 below:

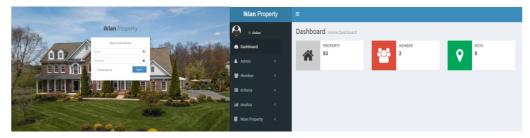


Figure 6: App Display Results In Internet Browser

The system is tested to verify appropriate operation. This research uses blackbox testing. Blackbox testing involves creating test scenarios. Table 12 shows the testing results:

	Table 12: Application trial results		
No. Test	Hasil Pengujian		
1	The admin user successfully added data, changed data, and deleted system admin user data.		
2	Admin user successfully added data changes and deleted member data.		
3	Admin user successfully added data changes and deleted criteria data.		
4	Admin user successfully added data changes and deleted sub-criteria data.		
5	Admin users have successfully managed ad data such as adding ad data, changing ad data, deleting ad data, approving pending ads and setting ad images.		
6	The admin user successfully runs and gets the results of a priori association rule analysis		
7	General users successfully register as members		
8	Member successfully manages ad data		

5. CONCLUSION AND FURTHER RESEARCH

Finally, the Property Product Recommendation System improves property suggestions using user interaction pattern-based association rules. Personal recommendations increase real estate decision-making and user experience. Adaptability and learning keep the system relevant. The study reveals that data-driven approaches increase user-centric property discovery. As the real estate market evolves, association rule techniques should be integrated into recommendation systems. This study optimises property recommendation systems with user-tailored suggestions. The Apriori Association Rule method recommends property advertising based

on user behaviour. The optimal Apriori Association Rule support value is 50% of the maximum item or criteria frequency, which can effect analysis results. With a minimum confidence value of 50%, the company may propose good results. The system was 'Very Good' and user-acceptable with a 90 acceptance test result.

Advanced machine learning and real-time user feedback could boost algorithm efficiency. Market developments and economic factors may improve the system's prediction. Explore different suggestion strategies based on user profiles and demographics to better understand individual preferences. The system's scalability and adaptability to real estate

markets and cultures must be assessed. The recommendation system must be constantly improved and adapted to provide useful property suggestions.

REFERENCES

- Chandra, Y.I., Lusita, M.D., Ekasari, M.H., 2022. Rancang Bangun Aplikasi Informasi Puskemas Berbasis Web Mobile (Studi Kasus: Puskesmas Tanah Abang). Tekinfo J. Bid. Tek. Ind. Dan Tek. Inform. 23, Pp. 106–115.
- Fitriah, Riadi, I., Herman, 2023. Analisis Data Mining Sistem Inventory Menggunakan Algoritma Apriori: Analysis Data Mining of Inventory System Using Apriori Algorithm. Decode J. Pendidik. Teknol. Inf. 3, Pp. 118–129. https://doi.org/10.51454/decode.v3i1.132
- Frequent Itemset Mining Using LP-Growth Algorithm Based on Multip...:
 Ingenta Connect [WWW Document], n.d. URL
 https://www.ingentaconnect.com/content/asp/jctn/2019/0000001
 6/00000004/art00026;jsessionid=3do0rpg0f46eg.x-ic-live-02
 (accessed 1.28.24).
- Jogiyanto, H.M., 2005. Analisis dan desain sistem informasi. Yogyak. Andi Offset.
- Laksito, A.D., Kusrini, 2019. Apriori Algorithm Optimization using Temporary Table, in: 2019 International Conference on Information and Communications Technology (ICOIACT). Presented at the 2019 International Conference on Information and Communications Technology (ICOIACT), Pp. 560–565. https://doi.org/10.1109/ICOIACT46704.2019.8938475

- Nurpita, A., Oktavia, R., 2021. The Analysis of Property Loans Development in Indonesia. Optim. J. Ekon. Dan Pembang. 11, Pp. 123–135. https://doi.org/10.12928/optimum.v11i1.3569
- Owen, J., 2019. Appraising the Property: Making the best of what you've got, in: Home Extension Design. RIBA Publishing.
- Pradana, M., 2016. KLASIFIKASI BISNIS E-COMMERCE DI INDONESIA. MODUS 27, 163. https://doi.org/10.24002/modus.v27i2.554
- Sun, G., Xuefeng, D., Chen, C.-C., 2023. Call for Metaverse e-commerce: future challenges and opportunities for electronic commerce. Electron. Commer. Res. https://doi.org/10.1007/s10660-023-09704-6
- Test suite completeness and black box testing Bonifácio 2017 Software Testing, Verification and Reliability Wiley Online Library [WWW Document], n.d. URL https://onlinelibrary.wiley.com/doi/10.1002/stvr.1626 (accessed 1.28.24).
- Toivonen, H., 2017. Association Rule, in: Sammut, C., Webb, G.I. (Eds.), Encyclopedia of Machine Learning and Data Mining. Springer US, Boston, MA, Pp. 70–71. https://doi.org/10.1007/978-1-4899-7687-1 38
- Wijaya, M.I.P., Aqromi, N.L., Afiyah, S.N., 2023. Implementasi Data Mining Pola Pembelian Pada Toko Santoso Tiga Sumenep Dengan Menerapkan Algoritma Apriori. J. Ilm. Teknol. Inf. Asia 17, Pp. 97–108. https://doi.org/10.32815/jitika.v17i2.909

